MatricesYou are currentlynot logged in Click here to log in 

Matrices is the plural of "matrix", which is a sort of "rectangular grid of numbers", like this ...
$\left[\begin{matrix}a_1&a_2&a_3\\b_1&b_2&b_3\end{matrix}\right]$
This is a matrix with two rows and three columns  it is a 2x3 matrix.
Adding matrices is easy  it only works if they're the same size, and you do it entry by entry.
Multiplying is much less obvious, but arises naturally by thinking of a matrix as a linear transformation from $R^n$ to $R^m.$ Thinking of matrix multiplication in that way makes it clear why division of matrices in not generally defined, but the inverse of a matrix will sometimes (but not always) exist.
Specifically, think of a matrix as a mapping from $R^n$ to $R^m$ and consider the space in $R^m$ of all points that can be hit. If the dimension of that space is n, then the mapping can be undone. That means the mapping has an inverse, and so the matrix has an inverse.
More later ...
(none)  (none)  LinearAlgebra PythagorasTheorem RationalisingTheDenominator SquareNumber 

MatrixMultiplication MatrixTransformation 
DeterminantOfAMatrix DifferenceOfTwoSquares EquationOfALine LinearFunction MathematicsTaxonomy 

⇌ 
You are hereMatrices 

(none)  
Commutative Euclid ScalarProduct Vectors 
(none)  (none) 
Last change to this page Full Page history Links to this page 
Edit this page (with sufficient authority) Change password 
Recent changes All pages Search 