A number $d$ is a divisor of $n$ if $n$ is a multiple of $d.$

Trivially, in the real numbers, every non-zero $d$ is a divisor of every other real number, and similarly for the complex numbers and the rational numbers. The definition really only becomes interesting when restricted to the integers, and usually the positive integers.

Examples:

• 6 is a divisor of 18.
• 35 is a divisor of 105.
• 9 is not a divisor of 15.

(none) (none) AGentleIntroductionToNPC
Axiom
CancellingFractions
ComplexPlane
CompositeNumber
Eratosthenes
EuclideanGeometry
Factorial
FermatNumber
FermatsLittleTheorem
Goldbach
MatrixTransformation
MersennePrime
ModuloArithmetic
MultiplyingComplexNumbers
PoincaresDisc
Polynomial
PrimePair
ReducingFractionsToLowestTerms
RiemannHypothesis
RiemannZetaFunction
Root
RootsOfPolynomials
SieveOfEratosthenes
TimeComplexity
TypesOfNumber
(none) AGentleIntroductionToTimeComplexity
CommonFactor
CommonMultiple
DividingWholeNumbers
Euclid
EuclideanAlgorithm
FactoringIntegers
FundamentalTheoremOfAlgebra
HighestCommonFactor
LeastCommonMultiple
PerfectNumber

## You are here

Divisor
ComplexNumber
Integer
RationalNumber
RealNumber
AlgebraicNumber
ArgandDiagram
CategoryMetaTopic
CauchySequence
ComplexConjugate
ComplexPlane
ContinuedFraction
CountableSet
DedekindCut
Denominator
DividingComplexNumbers
Euler
ImaginaryNumber
IrrationalNumber
MultiplyingComplexNumbers
Numerator
PolarRepresentationOfAComplexNumber
Pythagoras
ReducingFractionsToLowestTerms
RootTwoIsIrrational
TranscendentalNumber