A number $d$ is a divisor of $n$ if $n$ is a multiple of $d.$

Trivially, in the real numbers, every non-zero $d$ is a divisor of every other real number, and similarly for the complex numbers and the rational numbers. The definition really only becomes interesting when restricted to the integers, and usually the positive integers.

Examples:


(none) (none) AGentleIntroductionToNPC
AddingComplexNumbers
AddingFractions
Admin_ProjectFrontEnd
AutomaticLink
Axiom
CancellingFractions
ComplexPlane
CompositeNumber
Eratosthenes
EuclideanGeometry
Factorial
FermatNumber
FermatsLittleTheorem
Goldbach
MatrixTransformation
MersennePrime
ModuloArithmetic
MultiplyingComplexNumbers
PoincaresDisc
Polynomial
PrimeNumberTheorem
PrimePair
ReducingFractionsToLowestTerms
RiemannHypothesis
RiemannZetaFunction
Root
RootsOfPolynomials
SieveOfEratosthenes
TimeComplexity
TypesOfNumber
WhatIsThisAbout
(none) AGentleIntroductionToTimeComplexity
CommonFactor
CommonMultiple
DividingWholeNumbers
Euclid
EuclideanAlgorithm
FactoringIntegers
FundamentalTheoremOfAlgebra
HighestCommonFactor
LeastCommonMultiple
PerfectNumber
PrimeNumber

You are here

Divisor
ComplexNumber
Integer
RationalNumber
RealNumber
(none) (none) AddingComplexNumbers
AlgebraicNumber
ArgandDiagram
CategoryMetaTopic
CauchySequence
ComplexConjugate
ComplexPlane
ContinuedFraction
CountableSet
DedekindCut
Denominator
DividingComplexNumbers
Euler
ImaginaryNumber
IrrationalNumber
MultiplyingComplexNumbers
Numerator
PolarRepresentationOfAComplexNumber
Pythagoras
ReducingFractionsToLowestTerms
RootTwoIsIrrational
TranscendentalNumber

Local neighbourhood - D3


Last change to this page
Full Page history
Links to this page
Edit this page
  (with sufficient authority)
Change password
Recent changes
All pages
Search