A complex number is the sum of a real number and an imaginary number, which can be plotted on an Argand Diagram, or complex plane, where the vertical axis is imaginary and the horizontal axis is real.

Euler gave us the representation that $a+bi=re^{i\theta},$ the so-called polar representation of a complex number.

Complex numbers often give a clean, clear, and elegant solution to problems that are otherwise muddy and convoluted.

Examples, explanations and derivations to follow.

Topics covered by this "meta topic" include:

CategoryMetaTopic
DifferentialCalculus
FamousPeople
GerolamoCardano
RiemannZetaFunction
SubtractingComplexNumbers
Vectors
BasinOfAttraction
Calculus
IntegralCalculus
PythagorasTheorem
RationalisingTheDenominator
RiemannSurface
AGentleIntroductionToTimeComplexity
AlgebraicGeometry
AlgebraicNumber
BirthdayProblem
CancellingFractions
CommonMultiple
CubicPolynomial
DifferentiatingPolynomials
DiophantineEquation
DividingWholeNumbers
Euclid
EuclideanAlgorithm
EulersNumber
FactorTheorem
FactoringIntegers
FermatNumber
FrontPage
Function
GaloisTheory
HamiltonCycle
HighestCommonFactor
ImageOfAFunction
InverseFunction
IrrationalNumber
JosephRaphson
LeastCommonMultiple
MagnitudeOfAVector
NaturalLogarithm
NewUserIntroduction
NewtonRaphsonMethod
PerfectNumber
RationalNumber
RealNumber
RemainderTheorem
RiemannHypothesis
Root
RootTwoIsIrrational
SquareNumber
Surd
TranscendentalNumber
ArgandDiagram
CategoryMetaTopic
ComplexConjugate
ComplexPlane
DividingComplexNumbers
ImaginaryNumber
MultiplyingComplexNumbers
PolarRepresentationOfAComplexNumber
AbsoluteValue
CauchySequence
CommonCoreDomains
CommonFactor
DifferenceOfTwoSquares
Divisor
DomainOfAFunction
FundamentalTheoremOfAlgebra
HolomorphicFunction
IsaacNewton
Logarithm
MagnitudeOfAComplexNumber
MathematicsTaxonomy
NewtonsMethod
Polynomial
Quaternion
RootsOfPolynomials
SquareRoot
TypesOfNumber
WhatIsATopic

## You are here

ComplexNumber
Euler
RealNumber
Associative
CategoryMeta
CommonFactor
Commutative
Euclid
IndexLaws
MagnitudeOfAComplexNumber
MultiplyingRationalNumbers
PythagorasTheorem
SquareRoot
Vectors
TranscendentalNumber AlgebraicNumber
Calculus
CauchySequence
ContinuedFraction
DedekindCut
FamousPeople
GraphTheory
IrrationalNumber
RationalNumber