Quadratic equations and cubic equations are examples of polynomials.
A polynomial in $x$ is of the form:

• $p(x)=ax^n+bx^{n-1}+cx^{n-2}+...+px+q,$ where $a\ne0$
The Fundamental Theorem of Algebra says that solving $p(x)=0$ will give $n$ roots, some (or all) of which might be complex (see complex number), although some may be repeated roots. For example, $x^2-2x+1=0$ has two roots, but both are equal to 1.

Root (none) AGentleIntroductionToNPC
BasinOfAttraction
BirthdayProblem
Calculus
ChainRule
CoDomainOfAFunction
CommutativeOperation
CubeRoot
DifferentialCalculus
DomainOfAFunction
EquationOfALine
EulerCycle
EulersNumber
EvaristeGalois
Factorial
FermatsLastTheorem
GraphTheory
GroupTheory
HolomorphicFunction
HyperbolicFunction
ImageOfAFunction
IntegrationByParts
InverseFunction
IrrationalNumber
LinearFunction
Logarithm
NewtonsMethod
OrdinaryDifferentialEquation
PartialDifferentialEquation
PiIsIrrational
PierreDeFermat
PolarRepresentationOfAComplexNumber
RangeOfAFunction
RealNumber
RiemannHypothesis
RiemannSurface
RiemannZetaFunction
RulerAndCompass
SquareRoot
TimeComplexity
TrigonometricFunction
TypesOfNumber
FundamentalTheoremOfAlgebra
RootsOfPolynomials
AGentleIntroductionToTimeComplexity
AlgebraicGeometry
AlgebraicNumber
CubicPolynomial
DifferentiatingPolynomials
DiophantineEquation
FactorTheorem
Function
GaloisTheory
HamiltonCycle
IntegralCalculus
MathematicsTaxonomy
RemainderTheorem
TranscendentalNumber

Polynomial
ComplexNumber
Divisor
FactorTheorem
Root
ComplexConjugate
RealNumber