For a given complex number $z=a+bi,$ the complex conjugate, written either $z^*$ or $\bar{z},$ is simply $a-bi.$

Of itself this appears to have no real value and hold no interest, but the result of multiplying a complex number by its complex conjugate is a real number. Thus it can be used in the process of dividing complex numbers.

This topic uses:
AbsoluteValue
AddingComplexNumbers
ArgandDiagram
CategoryMetaTopic
CauchySequence
CommonCoreDomains
CommonFactor
ComplexPlane
DifferenceOfTwoSquares
Divisor
DomainOfAFunction
FundamentalTheoremOfAlgebra
HolomorphicFunction
ImaginaryNumber
IsaacNewton
Logarithm
MathematicsTaxonomy
MultiplyingComplexNumbers
NewtonsMethod
Quaternion
RationalisingTheDenominator
SiteNavigation
SquareRoot
TypesOfNumber
PolarRepresentationOfAComplexNumber
Polynomial
CosineRule
DiophantineEquation
MagnitudeOfAVector
Pythagoras
RootTwoIsIrrational
SuggestedReading
ComplexNumber
DividingComplexNumbers
MagnitudeOfAComplexNumber
PythagorasTheorem
RootsOfPolynomials
WhatIsATopic

## You are here

ComplexConjugate
MultiplyingComplexNumbers
RealNumber
AddingComplexNumbers
ArgandDiagram
CategoryMetaTopic
ComplexPlane
Euler
ImaginaryNumber
MultiplyingRationalNumbers
IndexLaws
PolarRepresentationOfAComplexNumber
AlgebraicNumber
CauchySequence
CommonFactor
ContinuedFraction
DedekindCut
IrrationalNumber
RationalNumber
TranscendentalNumber

# Local neighbourhood - D3

 Last change to this page Full Page history Links to this page Edit this page   (with sufficient authority) Change password Recent changes All pages Search