The domain of a function is the set of values for which the function is defined. When a function is defined by a formula the domain should be an integral part of the definition, although it is often implicit.

For example, the function $f(x)=x^2$ could be defined over:

... and more. In each case the same formula is used, but in each case the function is different.
BirthdayProblem
Calculus
ChainRule
CommutativeOperation
CubeRoot
DifferentialCalculus
EquationOfALine
EulersNumber
Factorial
HolomorphicFunction
HyperbolicFunction
IntegralCalculus
IntegrationByParts
LinearFunction
MathematicsTaxonomy
NewtonsMethod
OrdinaryDifferentialEquation
PartialDifferentialEquation
RiemannHypothesis
RiemannZetaFunction
TrigonometricFunction
AGentleIntroductionToTimeComplexity
CoDomainOfAFunction
Logarithm
RangeOfAFunction
RiemannSurface
AbsoluteValue
AlgebraicNumber
EuclideanAlgorithm
ImaginaryNumber
IrrationalNumber
MagnitudeOfAVector
Root
RootTwoIsIrrational
Surd
Function ImageOfAFunction
InverseFunction
SquareRoot

## You are here

DomainOfAFunction
AlgebraicNumber
ComplexNumber
Integer
RationalNumber
RealNumber
CoDomainOfAFunction
ImageOfAFunction
RangeOfAFunction
ArgandDiagram
CategoryMetaTopic
CauchySequence
ComplexConjugate
ComplexPlane
ContinuedFraction
CountableSet
CubeRoot
DedekindCut
Denominator
DividingComplexNumbers
Euler
ImaginaryNumber
IrrationalNumber
MultiplyingComplexNumbers
Numerator
PolarRepresentationOfAComplexNumber
Pythagoras
ReducingFractionsToLowestTerms
RootTwoIsIrrational
SquareRoot
TranscendentalNumber